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Abstract— While the topic has a long history in research,
model structure selection is still one of the more challenging
problems in system identification. In this tutorial we focus on
impulse response modelling, and link classical techniques such
as hypothesis testing and information criteria (e.g. AIC) to
recent model estimation approaches, including regularisation.
We discuss the problem from minimum mean-square error and
maximum-likelihood perspectives.

I. INTRODUCTION

Model structure selection is one of the key issues in
system identification [1], [2]. Most methods used in system
identification originate from statistics, where the topic has
a long history [3], [4], [5], [6], [7]. In this tutorial we will
focus on three issues:

o The commonality of many of the used methods.

« The relation between regularisation, recently in vogue
due to, e.g., sparse estimation, and model structure
selection.

o Inherent limitations in model structure selection

Below we give a brief account of these issues. More details
will be provided in the tutorial.

II. ESTIMATION OF A LINEAR SYSTEM

In order to be concise, we will assume that the data is
generated by

Y =dg° +V (1)

where @ € RV*" is a known (deterministic) matrix, where
V ~ N(0, o2l ), with the noise variance o2 being unknown,
and where ¢° = [gf gfl]T € R”™ is an unknown
parameter vector. The objective is to estimate g° (and o?)
from Y and .

The estimation of a stable linear time-invariant single-
input single-output dynamical system can be put into this
framework by taking n so large that the impulse response
beyond time n is negligible. The regression matrix is then
given by a Toeplitz matrix built up by the input to the system
{u(t)} and Y by the output {y(t)}. More precisely the model
is here

y(t) = 3 ggult — k) + o(t)
k=1
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so that

[y(n +1)

. { y(EV) |

Without any other assumptions, estimating g in (1) is the
classical linear regression problem. Omitting some parameter
independent terms and rescaling the remaining term, the
negative log-likelihoood criterion is given by

b =

u(N.— 1) u(N.— n)

Jur(g) =Y — &g[]> = (Y = Pg)" (Y —®g) (2

A. Unstructured estimation

The unstructured Maximum-Likelihood (ML) estimate of
g° is defined as

gur = argmin Jarr,(g) 3)
g

Completing the square gives
Jvr(g) = Jmr(g) + Imr(grs) 4)

where

Iur(9) == (9—grs)" R(g — jrs)
R:=o"9
grs :=R7'®"Y =g+ R7'®"V
Jur(grs) =Y (I - Pp)Y = V(I - Pp)V
where in turn Pg is the projection matrix

Pp:= R ‘o7

From (4) it is immediate that the unstructured ML estimate
is given by gy, = grs, i-e. the least-squares estimate. This
estimate is unbiased

Elguz] = E[¢° + R71®TV] = ¢°
and attains the Cramér-Rao bound for the unstructured case,
i.e.
E[(gmz — 9°)(gmr — 9°)" 1 = E[R™'@"VVOR™!]
— 02R71

is the smallest possible covariance matrix for an unbiased
model given the unstructured model (1).



B. Structured estimation

A model structure is a restriction on g° represented by a
set G:

goegCRn

The (structured) Maximum Likelihood (ML) estimate is then
given by

gg = argmin Ju1(9)
g S
st.ge g

When ¢° € G, gg will have better accuracy than §psr..

C. Model structure selection

Consider now that there is a family of candidate model
structures

=:={G(p): pe D, CR™}, 6)

indexed by the parameter p. The model structure selection
problem is to select an appropriate structure, i.e. which p to
use.

D. Relation to sparse estimation

The recent area of sparse estimation is intimately related to
model structure selection. To see this, consider as an example
the following model structures, corresponding to FIR models
of increasing order:

Mli
MQZ

et ~ N(0,0%)
e; ~ N(0,0%)

Yt = g1us—1 + €4,

Yt = g1Ut—1 + gaUur—2 + €4,

As in this example, many model selection problems consider
nested structures, where M| C My C --- C M. For these
problems, we can re-parametrise the structures so that

My 91:(91, O,...,O)E@
MQZ 92:(91,92,...,0)68

where © is a parameter space associated with the largest
model structure into consideration, M. The problem of
model structure selection then corresponds to deciding how
many trailing zeros 6 should have.

In sparse estimation, the problem is very similar: 6 is
assumed to be sparse, i.e., it is supposed to consist of very
few nonzero entries. The goal of sparse estimation is then to
determine which entries are zero, and, afterwards, to estimate
the value of the non-zero entries. The first step in sparse
estimation can be seen, therefore, as one of model selection!

III. APPROACHES TO MODEL STRUCTURE SELECTION

There are several well-established approaches to model
structure selection. A very popular method for model struc-
ture selection is cross-validation, where the performance of
a model is assessed on a validation data set, i.e., a fresh data
set not used to identify the parameters [8], [9].

Information criteria try to mimic cross-validation without
using a separate data set. The celebrated AIC and BIC criteria
[3], [10], [11] belong to this class of methods.

Hypothesis testing can also be used for model structure
selection [12]. Here the idea is to pick the simplest structure
that cannot be rejected by a statistical test based on the
assumptions associated with the structure in question. Most
standard model selection criteria can be re-phrased as hy-
pothesis tests [13]. A very common test statistic measures the
sample cross-correlation between the inputs and the residuals
Y — &g [14]. If the sample cross-correlation has too large
magnitude, the model structure is deemed inadequate.

IV. A COMMON FORMAT FOR SELECTION CRITERIA

Returning to (4), we see that the structured estimation
problem (5) can be expressed as

gg = argmin Jyr(g)
9 @)
st.geg

We thus see that the model structure selection problem can be
seen as model reduction of the unconstrained (unstructured)
ML-estimate §psz. From this insight it follows that there is
a close connection betweeen the different model structure
approaches. It turns out that many of them can be cast as
tests of the type

Reject G if Jyr(gg) > ¢ 62 (8)
where &2 is an estimate of the noise variance o2, and where
the constant ¢ in (8) depends on the particular test. As we
will discuss the particular noise variance estimate has a big
impact on the result.

V. MODEL STRUCTURE SELECTION AND
REGULARISATION

The mean-squared error (MSE) of an estimate ¢
MSE(9) := E[l|g — ¢°[13] ©)

can be split into a bias term and a variance term according

to
MSE(g) := |Elg] — g°|3+Ellg — E[g]l3]  (10)

Bias2

Variance

The MSE of an estimate can be decreased by introducing, on
purpose, some bias in such a way that the variance decreases
more than the contribution to the MSE from the bias term.
Methods aiming to improve the accuracy of the unstructured
estimate §psr in this way can be seen as alternatives to
structured estimation (5). By carefully tuning the bias, it is
possible to obtain estimates which are uniformly better than



ML in terms of MSE (over all values of ¢g°); this is typically
called Stein’s phenomenon [15].

One method to achieve this is regularisation. Here, the
ML-criterion (2) is modified to

Y

where P is a penalty function that penalises certain properties

of g, and where o > 0 is an appropriately chosen constant,

and p; € R™ is a parameter that can be used to shape P.
A classical choice of P is

P(g) = lgl3

leading to so-called ridge-regression. The penalty function
(12) pulls the estimate towards the origin, thereby decreasing
its variance (take the extreme case a = 400 which always
yields zero as estimate) at the cost of some bias.

In [16], so called kernel-based methods were adapted
to impulse response estimation. In [17] it was shown that
this corresponds to regularisation with a weighted 5 norm
P(g,p1) = llgl% = g"W(p1)g, and « and p; estimated
using Empirical Bayes [18]. With W (p;) tailored to the
specifics of impulse responses of finite dimensional systems,
very impressive results have been achieved.

Here we link regularisation to model structure selection
by the observation that there is a one-to-one correspondence
between all estimates that can be obtained by minimising
(11), and those that can be obtained solving

JP(gvavpl) = JML(g) + ap(gapl)

12)

mgiﬂ Jrrr(9)

(13)
st. P(g,p1) < p2
for pa € [0,00). Now (13) corresponds to (5) with
G=G(p):={g: P(g,p1) < p2} (14)

where p = [p] pg]T. Regularisation thus corresponds to
model structure selection. We will elaborate further on this
connection in the tutorial. For example, taking P(g) = ||¢g]| 1
leads to the LASSO method and promotes sparse estimates,
i.e. that the support of ¢ is taken as small as possible.
Research in this direction has been intense.

VI. FUNDAMENTAL LIMITATIONS IN MODEL STRUCTURE
SELECTION

Many model structure selection methods aim at recovering
the true underlying structure. For example, with p in (6)
denoting the model order, it is desirable to recover the true
order asymptotically as the number of observations grows.
Or, in sparse estimation, where it is known that some, but
not which, of the elements of g are zero, it is of interest to
recover this sparsity pattern.

One of the major contributions to model structure selection
in recent years has been to show that there exist a fundamen-
tal limitation so that methods that achieve this have very poor
worst case performance [19]. Indeed, due to their asymptotic
properties, model selection criteria can be broadly classified
into two groups:

o “AIC-type” (e.g., CV, AIC, GCV, SURE). These cri-
teria are based on an estimate of the prediction error,
and attempt to choose the model structure with best
prediction accuracy. Unfortunately, these criteria are
typically inconsistent, that is, they tend to choose model
structures which are larger than the smallest containing
the true system (in case such a structure exists).

e “BIC-type” (e.g. BIC, MDL). These criteria attempt
to choose the ‘“true” structure, and, as a result, are
typically consistent. However, the resulting model does
not always lead to the best prediction accuracy.

There is an extensive bibliography on both groups of
techniques, and for decades researchers tried to combine their
virtues of prediction accuracy and consistency. However,
recently it has been shown that such goal is impossible to
achieve [20], [21]. In essence, it has been established that
the use of any estimator together with any consistent model
selection criterion gives an MSE which decays slower than
1/N for some ¢°, i.e., slower than a standard estimator (e.g.,
ML) without model selection!

It has also been shown that estimation the model structure
also imposes limitations in how the user can assess the model
error [22]. We elaborate on these issues and their implications
for how to select an appropriate model selection criterion
[23].
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