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Feedback Control and Youla Parameterization

Goal: Design a controller that drives the output as close to the reference as possible.

PlantController

Disturbance

Output

Noise

Reference
Input

C G−

Concerns:

1. Reference: Output should be equal to reference.
2. Disturbance: Disturbance should not affect output.
4. Noise: Noise should not perturb output.
5. Input: Input should lie within prescribed limits.
6. Stability: Closed loop should be stable.
7. Robustness: Model errors should not affect performance nor stability.
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Feedback Control and Youla Parameterization (cont.)

Reminder: If x = (x[k])k∈N0 is a real sequence, its Z-transform is

X (z) :=Z {x}(z) :=
∞∑

k=0
x[k]z−k ,

where z is restricted to the subset of C where the sum is convergent.

If Z {ref.}=: R(z), Z {noise}=: N(z), Z {disturb.}=: D(z), Z {in.}=: U(z) and Z {out.}=: Y (z):

Y (z)
R(z)

∣∣∣∣
D,N=0

= G(z)C(z)
1+G(z)C(z)

=: T(z) (complementary sensitivity)

Y (z)
D(z)

∣∣∣∣
R,N=0

= 1
1+G(z)C(z)

= 1−T(z)=: S(z) (sensitivity)

Y (z)
U(z)

∣∣∣∣
D,N=0

= G(z)
1+G(z)C(z)

=: Si(z) (input sensitivity)

U(z)
R(z)

∣∣∣∣
D,N=0

= C(z)
1+G(z)C(z)

=: Su(z) (control sensitivity)

A control loop is internally stable if all these sensitivities are stable.
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Feedback Control and Youla Parameterization (cont.)

Many of the concerns can be traded-off by imposing, e.g., that

• T(eiω)≈ 1 for small ω,

• T(eiω)≈ 0 for large ω,

• the closed loop is internally stable.

This can be achieved by requiring that C yields a stable closed loop and minimizes

∥W1(1−T)∥∞+∥W2T∥∞ = sup
|z|=1

|W1(z)[1−T(z)]|+ sup
|z|=1

|W2(z)T(z)|. (W1,W2 : weights)

To parameterize all stabilizing controllers C, the following result is useful:

Theorem (Youla/affine parameterization) (see bonus slides for proof)
Assume that G is stable. Then C yields an internally stable loop iff the Youla parameter
Q := C/(1+GC) is stable. Furthermore, all sensitivity functions are affine functions of Q.
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Approaches to H∞ Control

(a) Nehari problem (H∞ approximation) ⇐ we will follow this approach!

(b) Nevanlinna-Pick problem (H∞ interpolation)

(c) Polynomial methods (H. Kwakernaak)

(d) Chain scattering (H. Kimura)

(e) Riccati equations (“DGKF” paper)

(f) Linear matrix inequalities (P. Gahinet & P. Apkarian, C. Scherer)

(g) Differential games (T. Başar and P. Bernhard)

(h) Krein space techniques

...
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The Big Picture

Our goal is to obtain the minimizer, over all Q ∈ H∞, of ∥T −GQ∥∞, where T ∈ L∞(T)
(recall from Topic 2 that T := {z ∈C : |z| = 1}) and G ∈ H∞. Now,

min
Q∈H∞

∥T −GQ∥∞ = min
Q̃=GOQ∈H∞

α∥G−1
I T − Q̃∥∞ (G =GI GO , where GO ,G−1

O ∈ H∞, |GI (eiω)|2 =α2 = constant)

= min
Q̃=GOQ∈H∞

α
∥∥∥[G−1

I T]stable + [G−1
I T]unstable − Q̃

∥∥∥∞
= min

Q′=Q̃−[G−1
I T]stable

α
∥∥∥[G−1

I T]unstable −Q′∥∥∥∞ , where Q′ ∈ H∞, [G−1
I T]unstable ∈ H⊥∞

=α
∥∥∥∥Γ[G−1

I T]unstable

∥∥∥∥ , where Γ[G−1
I T]unstable

is a Hankel operator. (Nehari’s theorem)

In this topic, we will define the appropriate Hp spaces, the inner-outer factorization
(G =GIGO), Hankel operators, Nehari’s theorem, and how to compute the minimizer!
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Hardy Spaces

Definition
For 1É p <∞, the Hardy space Hp is the normed space of analytic functions f on the
exterior of the unit disc, E := {z ∈C : |z| > 1}, for which the norm

∥ f ∥p := sup
1<rÉ∞

(
1

2π

ˆ π

−π
| f (reiω)|pdω

)1/p

is finite. H∞ is the space of bounded analytic functions f on E, with norm

∥ f ∥∞ := sup
z∈E

| f (z)| = sup
−πÉω<π
1<rÉ∞

| f (reiω)|.

Remark. For 1É p < q É∞, Hp ⊇ Hq : indeed, for fixed r ∈ (1,∞], with fr(ω) := f (reiω), so
fr ∈ Lq[−π,π]; Hölder’s inequality yields

´ π
−π | f (reiω)|pdω= ∥ fr∥p

p = ∥1 · f p
r ∥1 É

∥1∥q/(q−p)∥ f p
r ∥q/p = (2π)1−p/q∥ fr∥p

q , i.e., ∥ fr∥p É (2π)1/p−1/q∥ fr∥q . In particular,
H∞ ⊆ H2 ⊆ H1.
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Hardy Spaces (cont.)

We can identify elements of Hp with functions in Lp(T)! (recall that T := {z ∈C : |z| = 1}).

Theorem. For every f ∈ Hp (1É p É∞) the radial limit f̃ (eiω)= limr→1+ f (reiω) exists
for almost every ω ∈ [−π,π], and indeed f̃ ∈ Lp(T), with ∥ f̃ ∥Lp = ∥ f ∥Hp .

(See bonus slides for proof in the case 1< p É∞)

Remark
Hp can be identified with a closed subspace of Lp(T), and hence it is a Banach space.
Indeed, Hp can be defined as the subspace of those f ∈ Lp(T) whose negative Fourier
coefficients vanish, i.e., f (eiω)=∑∞

n=−∞ an e−inω with

an := 1
2π

ˆ π

−π
f (eiω) einωdω= 0 for n < 0.

Those f ’s can be extended to E as f (z)=∑∞
n=0 an z−n for z ∈ E.
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Hardy Spaces (cont.)

In particular, H2 is a Hilbert space, since it is a closed subspace of L2(T), and we can
define the projection operator from L2(T) onto H2 as

PH2 :
∞∑

n=−∞
an e−inω 7→

∞∑
n=0

an e−inω.

H2 can also be identified with ℓ2, by: ω 7→
∞∑

n=0
an e−inω ∈ H2 ⇔ (a0,a1, . . . ) ∈ ℓ2.

Note. Hp with p ̸= 2 cannot be identified with ℓp .

H⊥
2 is the orthogonal complement of H2 in L2(T), i.e., f ∈ H⊥

2 iff it has the form

f (eiω)=∑−1
n=−∞ an e−inω.

RHp and RLp are those subspaces of Hp and Lp(T) consisting of those functions which
are real-rational (i.e., quotients of polynomials with real coefficients).
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Hardy Spaces (cont.)

For some derivations, we will need the following technical lemma:

Lemma. If f ∈ H2 \{0}, then f (eiω) ̸= 0 almost everywhere, and
´ π
−π log | f (eiω)|dω>−∞.

Proof (Helson and Lowdenslager, 1958)
If f (z)=∑∞

n=0 an z−n is non-zero, by multiplying it by some zm (m ∈N) we assume w.l.o.g. that a0 ̸= 0.

Consider the affine subspace C = {z 7→ f (z)[1+b1 z−1 +·· ·+bm z−m] : m ∈N;b1, . . . ,bm ∈C}⊆ H2; note
that 0 ∉ C̄, since if h ∈ C, h(∞)= a0 ̸= 0. By the closest point property, there is a g ∈ C̄ of smallest norm.

Given λ ∈C and m ∈N, ∥g+λz−m g∥2 = (1+|λ|2)∥g∥2 +2Re
[
(λ/2πi)

ˆ π

−π
|g(eiω)|2 e−imωdω

]
, but since

g+λz−m g ∈ C̄ and g has minimum norm in C̄,
´ π
−π |g(eiω)|2 e−imωdω= 0 for all m ∈N, and taking the

conjugate the same holds for all −m ∈N; thus, |g(eiω)|2 ≡ g0 > 0, since g ̸= 0.

Assume f (z)= 0 on a set E ⊆T. Define h : T→C as h(z)= 0 on T\ E, and h(z)= |g(z)|/g(z) on E. Then,
h ∈ L2(T) and (F,h)= 0 for all F ∈ C (since F also vanishes on E), and by continuity, (F,h)= 0 for all
F ∈ C̄, so 0= (g,h)= (2π)−1 ´

E |g(eiω)|dω= (2π)−1pg0m(E) (where m is the Lebesgue measure), hence
E has measure zero.

Now, for ε> 0, let λ= 1
2π
´ π
−π log[| f (eiω)|2 +ε]dω and ψ=λ− log[| f |2 +ε]. Then, since

´ π
−πψ(eiω)dω= 0,

eψ can be approximated arbitrarily well in T by polynomials of the form |1+b1 z−1 +·· ·+bm z−m |2
(recall Topic 5), so

exp
{

1
2π

ˆ
log[| f |2 +ε]

}
= 1

2π

ˆ π

−π
exp(λ)dω= 1

2π

ˆ
eψ(| f |2 +ε)Ê 1

2π

ˆ
eψ| f |2 Ê inf

F∈C̄
∥F∥2 = g0 > 0.

The monotone convergence theorem, for ε→ 0, yields
´ π
−π log | f (eiω)|2dω>−∞.
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Hardy Spaces (cont.)

Inner-Outer Factorization

Example: 4
(z−2)(z−3)

(z−0.5)(z−0.6)
= (z−2)(z−3)

(1−2z)(1−3z)︸ ︷︷ ︸
“inner function”

(constant modulus = 1 in T)

· 4
(1−2z)(1−3z)

(z−0.5)(z−0.6)
.︸ ︷︷ ︸

“outer function”
(all poles and zeros outside E)

Definitions
An inner function is an H∞ function with unit modulus almost everywhere in T.
An outer function is an f ∈ H1 that can be written as

f (z)=αexp

(
1

2π

ˆ π

−π
z+ e−iω

z− e−iω k(eiω)dω

)
, z ∈ E,

where k : T→R is an integrable function, and |α| = 1.

Remark: An outer function cannot have zeros in E.
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Hardy Spaces (cont.)

Inner-Outer Factorization (cont.)

Theorem (Beurling). Let f ∈ H1 be nonzero. Then, f = fI · fO , where fI is inner and fO
is outer. This factorization is unique up to a constant of unit modulus.

Proof idea: Let k = log | f | (integrable by the lemma on slide 14) in the definition of outer function.

Corollary (Riesz factorization theorem)
f ∈ H1 iff there are g,h ∈ H2 s.t. f = gh and ∥ f ∥H1 = ∥g∥H2∥h∥H2 .

Proof. Since f = fI fO , where fI is inner and fO is outer, let g =√
fO and h =√

fO fI .
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Hankel Matrices and Operators

A causal discrete-time linear system G is defined by the relation

yt =
∞∑

k=0
gkut−k =

t∑
k=−∞

gt−kuk , t ∈Z,

or, in matrix form,



...
y−1
y0
y1
...


=



. . .
. . . 0

g1 g0 0
. . .

. . . g1 g0 0
. . . g1 g0

. . .

g1
. . .


︸ ︷︷ ︸

Toeplitz form describing G
(infinite matrix, constant along its diagonals)



...
u−1
u0
u1
...


.
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Hankel Matrices and Operators (cont.)

If we constrain the input (ut)t∈Z so that ut = 0 for t > 0, and project (yt)t∈Z onto ℓ2(Z+)
(i.e., only focus on yt for t Ê 0), we obtain


y0
y1
y2
...

=



g0 g1 g2 · · ·
g1 g2 g3

g2 g3
...

...


︸ ︷︷ ︸

infinite Hankel matrix
(constant along its anti-diagonals)


u0

u−1
u−2

...


Hankel operator, ΓG , with symbol G =∑∞

k=−∞ gk z−k , relating past inputs u ∈ ℓ2(Z−)
to future outputs y ∈ ℓ2(Z+).

If R is the reversion operator on L2(T), R
(∑∞

k=−∞ ak z−k
)

:=∑∞
k=−∞ a−k z−k , and MG is

the multiplication operator on L2(T) by G, MG f =G f , then ΓG can be seen as an
operator on H2:

ΓG = PH2 MG R
∣∣∣
H2

.
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Hankel Matrices and Operators (cont.)

Note that if G(z)= g1z−1 + g2z−2 +·· · is the transfer function of a system described by

xt+1 = Axt +But State-space representation

yt = Cxt, (with state xt ∈Rn)

then G(z)= C(zI − A)−1B, and the Hankel matrix of zG(z) is

g1 g2 g3 · · ·
g2 g3 g4

g3 g4
...

...

=



CB CAB CA2B · · ·
CAB CA2B CA3B

CA2B CA3B
...

...

=


C

CA
CA2

...


︸ ︷︷ ︸

Ψo : Cn→ℓ2
observability operator

[
B AB A2B · · ·

]
︸ ︷︷ ︸

Ψc : ℓ2→Cn

controllability operator

.

This means that the Hankel operator can be decomposed into a controllability operator
(mapping past inputs to initial state x0) and an observability operator (mapping the
initial state to future outputs).
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Hankel Matrices and Operators (cont.)

Norm of ΓG
Assume that G is controllable and observable, i.e., that Ψc is surjective and Ψo is
injective, respectively. Since ΓG =ΨoΨc , we have, for every x ∈ ℓ2,

∥ΓG x∥2 = (ΓG x,ΓG x)= (ΨoΨcx,ΨoΨc x)= (Ψ∗
oΨoΨcx,Ψcx)= (Ψ∗

oΨo y, y),

where y=Ψcx. Hence

∥ΓG∥2 = sup
y=Ψc x
∥x∥ℓ2É1

(Ψ∗
oΨo y, y)= sup

y=Ψc x
∥x∥ℓ2É1

yT [Ψ∗
oΨo]y= sup

yT [ΨcΨ∗
c ]−1 yÉ1

yT [Ψ∗
oΨo]y.

The last step is due to that y=Ψcx for some x ∈ ℓ2 s.t. ∥x∥ É 1 iff yT [ΨcΨ
∗
c ]−1 yÉ 1,

which holds since minx∈ℓ2,y=Ψc x ∥x∥2 = yT [ΨcΨ
∗
c ]−1 y. This follows from a result in the

bonus slides of Topic 8, which states that the minimizer xopt satisfies xopt =Ψ∗
c z for some

z ∈Cn s.t. y=ΨcΨ
∗
c z, i.e., xopt =Ψ∗

c [ΨcΨ
∗
c ]−1 y, hence ∥xopt∥2 = yT [ΨcΨ

∗
c ]−1 y (note

that the assumption that R(Ψc)=Cn holds because G is controllable).
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Hankel Matrices and Operators (cont.)

Norm of ΓG (cont.)

Now,

Lc :=ΨcΨ
∗
c =∑∞

k=0 AkBBT (AT )k

Lo :=Ψ∗
oΨo =∑∞

k=0(AT )kCT CAk are solutions of:
Lc − ALc AT = BBT

Lo − AT Lo A = CT C.
(Lyapunov equations)

Therefore:

∥ΓG∥2 = max
yT L−1

c yÉ1
yT Lo y (x = L−1/2

c y)

= max
xT xÉ1

xT L1/2
c LoL1/2

c x Easy eigenvalue problem

=λmax(L1/2
c LoL1/2

c )

=λmax(LcLo).

Note. λmax(AB)=λmax(BA), since ABx =λmaxx can be written as the set of equations
A y=λmaxx, Bx = y, or equivalently, BA y=λmax y, and vice versa.
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Nehari’s Theorem

Notice that if Γ= PH2 MgR
∣∣∣
H2

is a Hankel operator, then

∥Γ∥ = ∥PH2 MgR∥ É ∥PH2∥∥Mg∥∥R∥ = ∥g∥∞.

The following result establishes a deep connection between H∞ problems and Hankel
operators:

Theorem (Nehari)
If Γ is a bounded Hankel operator on H2, then there is a g ∈ L∞(T) s.t. Γ= PH2 MgR

∣∣∣
H2

,

and ∥g∥∞ = ∥Γ∥.

Remark: Two symbols g,h ∈ L∞(T) give the same Hankel operator iff their nonnegative
Fourier coefficients coincide, i.e., g(z)=∑∞

k=−∞ gk z−k and h(z)=∑∞
k=−∞ hk z−k , with

gk = hk for all k Ê 0. Thus, Nehari’s theorem establishes the greatest lower bound on the
∞-norm of a g ∈ L∞(T) whose projection onto H2 is fixed.
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Nehari’s Theorem (cont.)

Corollary
Given g ∈ L∞(T), we have that ∥Γg∥ =minh∈H⊥∞

∥g−h∥∞, where H⊥∞ is the space of

those f (z)=∑−1
k=−∞ fk z−k which are analytic and bounded in D= {z ∈C : |z| < 1}.

Given Γ, the problem of finding a symbol for Γ of minimum norm, i.e.,

∥Γ∥ = inf {∥g∥∞ : g ∈ L∞(T) is a symbol for Γ},

is called the Nehari extension problem.
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Nehari’s Theorem (cont.)

Proof of Nehari’s theorem
We already know that if g is a symbol for Γ, then ∥Γ∥ É ∥g∥∞. Our goal then is to show that there is a
symbol for which we achieve equality. As the non-positive Fourier coefficients of g are fixed, we need
to determine the positive ones, which amounts to extend Γ to a Hankel operator on L2. We will do this
by extending a related functional from H1 to L1.

The entries of the matrix of Γ are an+m := (Γz−n , z−m)= (Γz−n−m ,1). Therefore,(
Γ

N∑
n=0

bn z−n ,
M∑

m=0
cm z−m

)
=

(
Γ

N∑
n=0

bn z−n
M∑

m=0
cm z−m ,1

)
.

Denote
(∑M

m=0 cm z−m
)+

:=∑M
m=0 cm z−m . Then, for polynomials f1, f2 we can define the functional

α( f1 f2)= (Γ f1, f +2 )= (Γ f1 f2,1),

which satisfies |α( f1 f2)| É ∥Γ∥∥ f1∥2∥ f2∥2.
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Nehari’s Theorem (cont.)

Proof of Nehari’s theorem (cont.)
By Riesz Factorization theorem, every f ∈ H1 can be factorized as a product of H2 functions f1, f2, and
polynomials are dense in H2, so α can be extended uniquely to α̃ : H1 →C, by α̃( f )= α̃( f1 f2)= (Γ f1, f +2 ).

Furthermore, |α̃( f )| É ∥Γ∥∥ f1∥2∥ f2∥2 = ∥Γ∥∥ f ∥1, so ∥α̃∥ É ∥Γ∥.

Since H1 is a subspace of L1, by Hahn-Banach there is an extension ᾱ of α̃ to L1 s.t. ∥ᾱ∥ = ∥α̃∥ É ∥Γ∥.

Since the dual of L1(T) is L∞(T), ᾱ( f )=
ˆ π

−π
f (eiω)h(eiω)dω for some h ∈ L∞(T), with

∥h∥∞ = ∥ᾱ∥ É ∥Γ∥. Now, for all n,m Ê 0,

an+m = (Γz−n−m ,1)= ᾱ(z−n−m)=
ˆ π

−π
e−i(n+m)ωh(eiω)dω.

Therefore, h(z)=∑∞
k=−∞ hk z−k with h−n = an for all n Ê 0, and ∥h∥∞ É ∥Γ∥.

This means that by taking g(eiω)= h(e−iω), we obtain the desired symbol for Γ.
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Nehari’s Theorem (cont.)

How can we compute the optimal symbol g ∈ L∞(T)?

Theorem (Sarason)
If Γ is a bounded Hankel operator on H2, and f ∈ H2 is nonzero and s.t.
∥ Γ f ∥2 = ∥Γ∥∥ f ∥2, then there is a unique symbol g ∈ L∞(T) for Γ of minimum norm,
∥g∥∞ = ∥Γ∥, and it is given by g =Γ f /R f . Moreover, |g(eiω)| is constant almost
everywhere.

Proof. Let g ∈ L∞(T) be s.t. ∥g∥∞ = ∥Γ∥, and recall that Γ f = PH2 MgR f . Therefore,

∥Γ∥∥ f ∥2 = ∥Γ f ∥2 = ∥PH2 MgR f ∥2 É ∥MgR f ∥2 É ∥g∥∞∥R f ∥2 = ∥Γ∥∥ f ∥2.

Since the leftmost and rightmost sides coincide, we have equality throughout. Therefore,
∥PH2 MgR f ∥2 = ∥gR f ∥2, i.e., gR f ∈ H2, so Γ f = gR f , or g =Γ f /R f , which shows that g is unique.

Moreover, since ∥gR f ∥2 = ∥g∥∞∥R f ∥2, it follows that |g(eiω)| is constant almost everywhere.
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Nehari’s Theorem (cont.)

How can we find an f ∈ H2 s.t. ∥Γ f ∥2 = ∥Γ∥∥ f ∥2?

Let y0 ∈Rn achieve the maximum in ∥ΓG∥ =maxyT L−1
c yÉ1 yT Lo y.

(How? Let ỹ= L−1/2
c y and solve the eigenvalue problem: max ỹT ỹÉ1 ỹT L1/2

c LoL1/2
c ỹ.)

The sought f is s.t. y0 =Ψc f , and to achieve equality in ∥Γ f ∥2 = ∥Γ∥∥ f ∥2 it must have
minimum norm. From the derivation at the end of Slide 21, this implies that

f =Ψ∗
c L−1

c y0,

or: fk = BT (AT )kL−1
c y0 for k Ê 0 (and zero otherwise), i.e., f (z)= zBT (zI − AT )−1L−1

c y0
Also, Γ f (z)= (ΨoΨc f )(z)= (Ψo y0)(z)=∑∞

k=0 CAk y0z−k = zC(zI − A)−1 y0, so

g(z)= (Γ f )(z)
(R f )(z)

= (Ψo y0)(z)
f (z−1)

= zC(zI − A)−1 y0

z−1BT (z−1I − AT )−1L−1
c y0

.
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H∞ Control Example

Consider the system: G(z)= z+2
z−0.9

.

We want to control it so that the transfer function T from reference to output becomes

T(z)= 1
6.5

z+0.3
z−0.8

,

i.e., we want the closed loop to be slightly
faster than G, and with static gain
T(ei0)= 1.
Using the Youla parameterization, we
can impose these constraints by mini-
mizing

inf
Q∈H∞

∥T −GQ∥∞.
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H∞ Control Example (cont.)

Let’s compute the optimum of

inf
Q∈H∞

∥∥∥∥ 1
6.5

z+0.3
z−0.8

− z+2
z−0.9

Q(z)
∥∥∥∥∞︸ ︷︷ ︸

=:J

.

Step 1: Factorize poles and zeros in D∥∥∥∥ 1
6.5

z+0.3
z−0.8

− z+2
z−0.9

Q(z)
∥∥∥∥∞ =

∥∥∥∥ 1+2z
z+2

(
1

6.5
z+0.3
z−0.8

− z+2
z−0.9

Q(z)
)∥∥∥∥∞

=
∥∥∥∥∥ 1

6.5
(z−1 +0.3)(2z−1 +1)
(z−1 −0.8)(z−1 +2)

− Q̃(z−1)

∥∥∥∥∥∞
=

∥∥∥∥− 3
104

(z+10/3)(z+2)
(z−1.25)(z+0.5)

− Q̃(z−1)
∥∥∥∥∞ ,

where Q̃(z) := 1+2z
z−0.9

Q(z).
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H∞ Control Example (cont.)

Step 2: Partial fraction expansion, to remove unstable poles

− 3
104

(z+10/3)(z+2)
(z−1.25)(z+0.5)

≈−0.0288+ 0.0701
z+0.5

− 0.2455
z−1.25

=−0.0288+ 0.0701
z+0.5

+0.1964︸ ︷︷ ︸
∈H∞

+ −0.1964z
z−1.25︸ ︷︷ ︸
∈H⊥∞

= 0.1676z+0.1538
z+0.5

− 0.1964z
z−1.25

,

so

J =
∥∥∥∥ 0.1676z+0.1538

z+0.5
−Q′(z−1)

∥∥∥∥∞ ,

where Q′(z) := Q̃(z)+ 0.1964z−1

z−1−1.25
= Q̃(z)+ 0.1964

1−1.25z = Q̃(z)− 0.1571
z−0.8 .

Step 3: State-space realization of the problem

0.1676z+0.1538
z+0.5

1
z

⇒ xk+1 =
[
−0.5 0

1 0

]
xk +

[
0.5
0

]
uk

yk =
[
0.3352 0.3077

]
xk .
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H∞ Control Example (cont.)

Step 4: Compute Gramians (by solving their Lyapunov equations)

Lc =
[

0.3333 −0.1667
−0.1667 0.3333

]
, Lo =

[
0.1385 0.1031
0.1031 0.0947

]
.

Step 5: Compute norm of Hankel matrix

∥Γ∥ = 0.1947.

Step 6: Compute f ∈ H2 s.t. ∥Γ f ∥2 = ∥Γ∥∥ f ∥2

y0 =
[
−0.3824
−0.1834

]
, f (z)=−0.94819

z+0.7902
z+0.5

.
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H∞ Control Example (cont.)

Step 7: Compute optimal symbol of Hankel matrix

(Ψo y0)(z)= zC(zI − A)−1 y0 =−0.18461
z+0.7902

z+0.5
,

so g(z)= 0.1750
(z+0.7902)(z−1 +0.5)
(z−1 +0.7902)(z+0.5)

.

Notice that |g(eiω)| = 0.1947 for all ω (as we expected).

Step 8: Compute optimal Q

Q(z)= z−0.9
1+2z

[
0.1571
z−0.8

+ 0.1676z−1 +0.1538
z−1 +0.5

−0.1750
(z−1 +0.7902)(z+0.5)
(z+0.7902)(z−1 +0.5)

]

= 0.096111(z−0.9)
(z+0.7902)(z−0.8)

.
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H∞ Control Example (cont.)

10
−3

10
−2

10
−1

10
0

10
1

−30

−20

−10

0

10

20

30

M
ag

ni
tu

de
 (

dB
)

 

 

Bode Diagram

Frequency  (rad/s)

G
target T
G*Q

Cristian R. Rojas Topic 10: Application to H∞ Control Theory 36



Last Slide

Thank you for attending the course!
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Bonus: Proof of Youla / Affine Parametrization

Notice that, in terms of the Youla parameter Q := C/[1+GC],

T = GC
1+GC

=GQ

S = 1
1+GC

= 1−GQ

Si =
G

1+GC
=G−G2Q

Su = C
1+GC

=Q,

hence all sensitivity functions are affine in Q. Now, if G and Q are stable, all sensitivity functions are

stable as well, while conversely, if the sensitivity functions are stable, Q = Su is stable too.
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Bonus: Radial Limits of Hp Functions

Poisson representation
Consider an analytic f : Ē→C. By Cauchy’s integral formula, for every analytic h : Ē→C:

f (z)=− 1
2πi

‰
T

f (w)
w− z

dw =− 1
2πi

‰
T

f (w)
[

1
w− z

+h(w)
]

dw =− 1
2π

‰
T

f (w)
[ w

w− z
+wh(w)

] dw
iw

,

for z ∈ E, since the integral of an analytic function in Ē around T is zero. Note that if
w = eit (t ∈ [−π,π]), dw/iw = dt. We want to choose h so the formula in brackets is real.
Now,

w
w− z

+wh(w)= 1+ z
w− z

+wh(w)= 1+ zw̄
1− zw̄

+wh(w), (w ∈T)

so we can force wh(w)= zw̄/(1− zw̄)= z̄w/(1− z̄w), or h(w)= z̄/(1− z̄w). Then, making
w = eit and z = reiθ (r > 1), we obtain

f (reiθ)=− 1
2π

ˆ π

−π

[
1+2Re

(
rei(θ−t)

1− rei(θ−t)

)]
f (eit)dt = 1

2π

ˆ π

−π
r2 −1

1−2r cos(θ− t)+ r2︸ ︷︷ ︸
=:P(r,θ−t) “Poisson kernel in E”

f (eit)dt.
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Bonus: Radial Limits of Hp Functions (cont.)

Poisson representation of Hp functions (p > 1)
Note first that, for every α ∈ (1,∞),

f (αreiθ)= 1
2π

ˆ π

−π
P(r,θ− t) f (αeit)dt (r ∈ (1,∞),θ ∈ [−π,π]).

To see this, apply the Poisson representation to fα(z)= f (αz), which is also analytic in Ē.

If f ∈ Hp for p > 1, then f̃α ∈ Lp[−π,π], where f̃α(ω) := fα(eiω), and ∥ f̃α∥p É ∥ f ∥p .
Consider a sequence ( f̃αn ) where αn → 1+. Since Lp = L∗

q , where q is s.t. 1/p+1/q = 1, by
Banach-Alaoglu, there is a subsequence ( f̃αk ) s.t. f̃αk → g ∈ Lp in a weak∗ sense (see
bonus slides of Topic 7). Thus,

1
2π

ˆ π

−π
P(r,θ− t)g(t)dt = 1

2π
〈P(r,θ−·, g〉 = lim

k→∞
1

2π
〈P(r,θ−·, f̃αk 〉 = lim

k→∞
f (αkreiθ)= f (reiθ),

since f is continuous in E; this yields a Poisson representation for analytic functions in E.
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Bonus: Radial Limits of Hp Functions (cont.)

Fatou’s Theorem. Let g ∈ L1[−π,π], and assume that

f (reiθ)= 1
2π

ˆ π

−π
P(r,θ− t)g(t)dt, for all r ∈ (1,∞),θ ∈ [−π,π].

Then, the radial limit limr→1+ f (reiθ)= g(θ) exists for almost all θ ∈ [−π,π].

Proof. From the Poisson representation of f ≡ 1,
´ π
−π P(r,θ− t)dt = 2π for all r,θ. Then, by integration

by parts, if G(t) := ´ t
−π g(τ)dτ,

f (reiθ )− g(θ)= 1
2π

ˆ π

−π
P(r,θ− t)[g(t)− g(0)]dt =− 1

2π

ˆ π

−π
∂P(r,θ− t)

∂t
[G(t)− g(θ)t]dt.

Now, for 0< δÉ |θ− t| Éπ, ∣∣∣∣ ∂P(r,θ− t)
∂t

∣∣∣∣É 2r(r2 −1)
[1−2r cos(δ)+ r2]2

→ 0 as r → 1+,

while − 1
2π

ˆ θ+δ

θ−δ
∂P(r,θ− t)

∂t
[G(t)− g(θ)t]dt =− 1

2π

ˆ δ

0

∂P(r, t)
∂t

t
[

G(θ+ t)−G(θ− t)
2t

− g(θ)
]

dt.

Given ε> 0, let δ> 0 be small enough so |g(θ)− [G(θ+ t)−G(θ− t)]/2t| É ε for all t ∈ [0,δ] (this holds for
almost all θ, by the Radon-Nikodym theorem). These two estimates imply that limr→1+ f (r)= g(0).
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Bonus: Radial Limits of Hp Functions (cont.)

Hardy’s theorem

Let f : E→C be analytic, and define Mp( f ; r) :=
[
(2π)−1 ´ π−π | f (reit)|pdt

]1/p
for r ∈ (1,∞)

and p ∈ [1,∞]. Then, Mp( f ; r) is non-increasing in r.

Proof (Taylor, 1950). Let us define a function F : E→ Lp[−π,π] by [F(z)](θ)= f (zeiθ ) (θ ∈ (−π,π)).
Notice that ∥F(z)∥p = Mp( f , |z|). We will show now that the maximum of ∥F(z)∥p over the open region
rE= {z ∈C : |z| > r} cannot be achieved inside rE, unless ∥F(z)∥p is constant in it. Indeed, if
∥F(z0)∥p = supz∈rE ∥F(z)∥p for some z0 ∈ rE, then since by Cauchy’s integral formula (defining the
integral entry-wisely)

[F(z0)](θ)= f (z0 eiθ )= 1
2π

ˆ π

−π
f (z0 eiθ +δei(θ+t))dt =

[
1

2π

ˆ π

−π
F(z0 +δeit)dt

]
(eiθ ),

where δ> 0 is small enough so that the integration path is inside rE, and it includes points z for which

∥F(z)∥p < ∥F(z0)∥p , then ∥F(z0)∥p É 1
2π

ˆ π

−π
∥F(z0 +δeit)∥pdt É ∥F(z0)∥p , which contradicts the

assumption that ∥F(z)∥p is not constant in the integration path. This contradiction proves that
Mp( f ; r)= supz∈rE ∥F(z)∥p is non-decreasing in r.
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Bonus: Radial Limits of Hp Functions (cont.)

The previous three results imply that every f ∈ Hp , for p > 1, has the Poisson
representation

1
2π

ˆ π

−π
P(r,θ− t) f̃ (t)dt = f (reiθ),

where f̃ (t)= limr→1+ f (reit) for all t ∈ [−π,π]. Furthermore, since ∥ f̃α∥p É ∥ f ∥p , the
Lebesgue dominated convergence theorem implies that ∥ f̃ ∥p = ∥ f ∥p .

Note. Our approach to the development of a Poisson representation fails for H1 functions
because L1[−π,π] is not the dual of any normed space. In particular, for an f ∈ H1, using
the Riesz representation theorem for the dual of C[−π,π], one arrives at the
Poisson-Stieltjes representation

1
2π

ˆ π

−π
P(r,θ− t)dG(t)= f (reiθ),

where G ∈NBV[−π,π], but extra effort is needed to show that it is differentiable (which
leads to the F. and M. Riesz theorem).
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