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Differentiability

Goal: Generalize the notion of derivative to functionals on normed spaces.

Definition. Let X,Y be normed spaces, D < X open,
and T: D — Y (a possibly nonlinear transformation). fo)=c
If, for x € D, there exists a bounded linear operator

heX —dTx(h)€Y s.t.

. 1T +h) =T - dTx P _
Il—0 21l

0,

then T is Fréchet differentiable at x, and dTx(h) is the Fréchet differential of T at x with
increment h.

d
If f is a functional on X, then dfy(h) = %f(x +ah)

a=0
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Differentiability (cont.)

Examples

1. If X =R" and f(x) = f(x1,...,%p) is a functional having continuous partial
derivatives with respect to each variable xj, then

noof
dfx(h)= —hy,.
x kgl axk k

1
2. Let X =C[0,1] and f(x) = / g(x(t),t)dt where g, exists and is continuous with
0

1 -1
respect to x. Then d fy(h) = dd—a / g(x(t)+ ah(t),t)dt = / gx(x(t),t)h(t)dt.
Jo Jo

a=0
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Differentiability (cont.)

Properties

1. If T has a Fréchet differential, it is unique.
Proof. If dT, d' Ty are Fréchet differentials of T, and £ > 0, |dTx(h)—d'Tx(h)| <
1T +h) = T(x) —dTx ()| + | T(x + k) - T(x)—d'Tx(h)|| < €|kl for h small. Thus, dTy —d'Ty is a
bounded operator with norm 0, i.e., dTy = d'Ty. O

2. If T is Fréchet differentiable at x € D, where D is open, then T is continuous at x.
Proof. Given £ >0, thereisa § >0 s.t. |T(x+h)—T(x)—6T(x;h)| <ellh|| whenever ||| <6, i.e.,
IT(x+Rh)— T <ellhll + 1dTx(R)| < (e + M)| |, where M = ||dTx|l, so T' is continuous at x. O

If T: D < X —Y is Fréchet differentiable throughout D, then the Fréchet differential is of
the form dTy(h) = T'(x)h, where T'(x) € £(X,Y) is the Fréchet derivative of T at x.

Also, if x — T'(x) is continuous in some open S € D, then T is continuously Fréchet
differentiable in S.

If f is a functional in D, so that dfc(h) = f'(x)h, f'(x) € X * is the gradient of f at x.
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Differentiability (cont.)

Much of the theory for ordinary derivatives extends to Fréchet derivatives:

Properties

1. (Chainrule). Let S: D <X — ECY and P: E — Z be Fréchet differentiable at x € D
and y = S(x) € E, respectively, where X,Y ,Z are normed spaces and D,E are open
sets. Then T =P oS is Fréchet differentiable at x, and T'(x) = P'(y)S'(x).

Proof. If x,x + h € D, then T'(x+h)—T(x) = P[S(x+h)] - P[S(x)] = P(y + g) — P(y), where
g=S(x+h)—S(x). Now, given an ¢ > 0, there are C,5 >0 s.t., whenever || <&, gl <C|hl,

lg—S')hl <elhl and [P(y+g)—P(y)—P'(y)gl <eligll, so T +h)—T(x) - P'(y)S' (x)hl
<e(|nl+lgl)=e@+C)A|. Thus, T'(x)h = P'(y)S' (x)h.
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Differentiability (cont.)

Properties (cont.)
2. (Mean value theorem). Let T be Fréchet differentiable on an open set D, and x € D.
Suppose that x+th €D for all t €[0,1]. Then |T(x+h)-T(x)| < ||A] sup |T'(x+th)|.
0<t<1

Fix y* €D*, lly* | =1, and let ¢(¢) := (T(x + th),y*) (¢ €[0,1]), which is differentiable, with ¢'(t) =
(T'(x+th)h,y*). Let y(t) = p(t) — (1 - £)p(0) — tp(1), s0 y(0) = y(1) = 0 and y/(¢) = ¢’ (1) + $(0) — p(1). If
y =0, then y' = 0; if not, there is a 7 € (0,1) s.t., e.g., y(r) > 0, so there is an s € (0,1) s.t. y(s) =
maxye[o,1] y(#). Now, y(s +h)—7y(s) <0 whenever 0<s+h <1, so y’(s) =0, and |p(1)— p(0)| =

¢’ ()] < supg<s<1 19" @) < IRl supg< <1 1T (x + tR)]l. Also, [¢p(1) = P(0)] = (T(x + k) — T(x),y*)1, so
taking the sup over ||y* | = 1 yields the result. O
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Differentiability (cont.)

Extrema
The minima/maxima of a functional can be found by setting its Fréchet derivative to zero!

Definition. xg € Q is a local minimum of f: Q < X — R if there is a nbd B of x¢ where
f(xp) < f(x) on QN B, and a strict local minimum if f(xg) < f(x) for all x € QN B\ {xg}.

Theorem. If f: X — R is Fréchet differentiable, then a necessary condition for f to have
a local minimum/maximum at xo € X is that dfx,(h)=0 for all h € X.

Proof. If dfx (h) #0, pick h s.t. llhgll = 1 and dfxy (ko) > 0. As h —0, |f(xg +h)— f(xg) — d fxo (/IR
— 0, so given ¢ € (O,dfxo (hq)) there is a y >0 s.t. f(xg +Yho) > f(xg)+ dfx0 (yho)—€y > f(xg), while

(@ —yho) < f(x0) = dfxy(yho) + €y < f(x0); thus, xg is not a local minimum/maximum. O

A generalization of this result to constrained optimization is:
Theorem. If x) minimizes f on the convex set Q < X, and f is Fréchet differentiable at
x0, then d fy,(x —x0) = 0 for all x € Q.

Proof. For x € Q, let A = x—x( and note that xo + ah € Q (0 < a <1) since Q is convex. The rest of the
proof is similar to the previous one. O
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Inverse/Implicit Function Theorems

The inverse and implicit function theorems are fundamental to many fields, and
constitute the analytical backbone of differential geometry, essential to nonlinear system
theory.

Theorem (Inverse Function Theorem)

Let X,Y be Banach spaces, and xg € X. Assume that 7: X — Y is continuously Fréchet

differentiable in a nbd of x(, and that 7"(x() is invertible. Then, there is a nbd U of x s.t.

T is invertible in U, and both T and 7! are continuous. Furthermore, 77! is

continuously Fréchet differentiable in T'(U), with derivative [7'(T -1 y))]_1 (yeT)).

Proof.

(1) Invertibility: Since T’ (xq) is invertible, by translation and multiplying by a linear map, assume

w.l.o.g. that xg =0, T'(xg) = 0 and 7" (xg) = I. Consider y — Ty(x) =x—T(x)+y for y € X; note that
a fixed point of Ty is precisely an x s.t. T(x) = y. Define the ball Bg :={x € X : |x|| < R}, which is
complete. Let F(x) = T(x) - x. By the mean value theorem, ||F(x)—F(x')| < supza% IF'(2)]-

|lx— | for all x,x’ € Bp, and since F'(0) = 0, given a fixed ¢ €(0,1), if R > 0 is small enough,
I1F(x)-FGIl <ellx -]
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Inverse/Implicit Function Theorems (cont.)

Proof (cont.)

Suppose |yl < R(1-¢). Note that, if x EE, 1Tyl <IF@)I+ Iyl <elxl+R(1-e)<R, so
Ty(Bg)<Bg, and for x,x' € Bg, [Ty(x) - Tyl < |1Fx) - F@)| <elx—x'l, so Ty is a
contraction. By the Banach fixed point theorem (Topic 4), T'y has a unique fixed point, i.e., if ||yl
is small enough, there is a unique x € Bg s.t. T(x) =y, so T~1: Br(;_,) — BR exists.

2

Continuity: Since T is Fréchet differentiable in By, it is continuous there. For y, yq € BR(1-¢)»
1Ty (x) = Tyy )1 = lly = yoll — 0 as y — o, so by the last part of the Banach fixed point theorem,

T~ is continuous.

Continuous differentiability: Consider a nbd V' 25 of 0 where 7" is invertible. Let W = T(V),
0,5 € W and xg = T 1(y9), x = T~ (). Then,

@

1T~ = T710) ~ [T (o)™ My =yl llx— 29 — [T ()]~ L(T'(@) — T(xo))|
Iy =oll N I17) = Tl
IT(x) = Txg) = [T (x0)1(x — x0) llac = gl
llac = 20 )(IIT(x)—T(xO)H '

< T @171 ()
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Inverse/Implicit Function Theorems (cont.)

Proof (cont.)

The 2nd factor tends to 0 as x — x(, while for the 3rd factor:

ine ! T(x) - T(xp)ll + liminf I7" (o)l =21l 1T(x) = T(xg) = T"(xp)[x — %ol

limin 1i;
x=x0 llx =20l X=X lx —xoll llx—2xoll
4 —
i @l 1
=xg  lx—xoll 17" (o)1 2
Hence, the left hand side of (%) tends to 0, and T_l(y()) has Fréchet derivative [T"(xq Nt O
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Inverse/Implicit Function Theorems

Theorem (Implicit Function Theorem)

Let X,Y,Z be Banach spaces, A <X xY open, and f: A — Z continuously Fréchet
differentiable, with derivative [fy fyl. Let (xq,y0) € A be s.t. f(xg,y0) = 0, and assume
that fy(xp,y0) is invertible. Then, there are open sets W< X and V<A st xge W,
(x0,¥0)€V,and a g: W — Y Fréchet differentiable at xq s.t. (x,g(x)) € V and f(x,g(x))=0
for all x € W. Moreover, g'(xg) = —[fy(x0,0)1 ™ fx(x0, y0)-

Proof. Define the continuously differentiable function F: A — X x Z by F(x,y) = (x, f(x,)). Note that
F(xg,y0) = (x0,0) and

I 0
fx(x0,50)  fy(x0,50)|”

1 0

F/ , —1: ,
G030 = | oyl L felxosy0) [y (o, 30l

F'(x0,50) =

i.e., F'(xq,y0) is invertible. By the inverse function theorem, there is an open V < A where F is
invertible and F~! is continuously differentiable. Let 7y : X x Y — Y be the projection of X x Y onto Y,
i.e., my (x,y) =y for all (x,y) € X xY. The function g: W — Y given by g(x) = ny(F’l(x,O)), where
W={xeX: (x,0)eF(V)}, satisfies the conditions of the theorem. O

Cristian R. Rojas ~ Topic 9: Differentiability and Optimization of Functionals 13



Inverse/Implicit Function Theorems (cont.)

Application to initial-value problems
Consider the initial-value problem

dx(t)
ar =f(x,t), tela,bl
x(a)=¢eR™,

where f is continuously differentiable, and x € C([a,b],R™).

We want to study the dependence of x on ¢. To this end, define the function
®: C([a,b],R") x R" — C([a,b],R") as

¢
D(x,&)(2) =x(t)—f—/ f(x(s),s)ds, tela,bl.
a

Notice that x solves the initial-value problem iff ®(x,¢) = 0. Now, @ is continuously
differentiable, and it satisfies the conditions of the implicit function theorem (check this!),
which implies that x depends on ¢ in a differentiable manner!
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Calculus of Variations
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Calculus of Variations

to
Classical problem: find a function x on [¢1,¢2] that minimizes J = / flx(t),x(t),t1dt.
Jitg

Assume that x belongs to the space D[t1,%9] of real-valued continuously differentiable
functions on [#1,g], with norm [lx| = max;; <z<t, [%()] + maxs; <z<zy [£(@)].
Also, the end points x(¢1) and x(¢2) are assumed fixed.

If Dy, [t1,t2] is the subspace consisting of those x € D[t1,¢2] s.t. x(¢1) = x(t2) = 0, then the
necessary condition for the minimization of ¢/ is

dJe(h)=0, forall heDplty,tal.
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Calculus of Variations (cont.)

We have

tg .
dde(h) = i/ Flx+ah, i+ ah,ddt
da Jiy

a=0

to to .
= / fr(x,%,0)h(t)dt +/ fi(x,%,t)h(t)dt (integration by parts, assuming
Jty t1

/t2
t

Lemma (Fundamental lemma of calculus of variations)

2

If a € Cltq,t2], and / a(t)h(t)dt =0 for every h € Dy[t1,t2], then @ =0.
1

Proof. If, e.g., a(t) > 0 for some ¢ € (¢1,%9), there is an interval (71,79) where a is strictly positive. Pick

d d
falx,%,t)— Efx(x&%t) h(t)dt. Efx(x,a‘c,t) is continuous in ¢)

o 2
h(t)=(t—-11)2(t—719)% if t € (11,79) and A(t) = 0 otherwise. Then, / a()h(t)dt >0, a contradiction. O
31

Using this result we obtain

d
ddyx(h)=0for all heDylt1,t2] < | fxlx,x,t)— afx(x,a'c,t) =0.| (Euler-Lagrange equation)
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Calculus of Variations (cont.)

Example (minimum arc length)
Problem: Given (t1,x(¢1)),(t9,x(t2)), determine curve of minimum length connecting
them.

Notice that, for every € > 0, there is a § > 0 s.t. if 0 < At < §, the distance between points
(t,x(t)) and (¢ + At,x(t + At)) is

\/(x(t + A1) - x(8))2 + A2 = \/(a'c(t)At +u)2+ A2 = \/1 +%2(8) At + g,
oty
where |11, |2l < €, hence the total arc length, by integration, is: o = / \1+&2(t)dt.
Jtq
Using the Euler-Lagrange equation, we obtain

13\/1%2:0

dt 0x

or x(¢) = constant. Thus, the extremizing arc is the straight line connecting these points.
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Game Theory and the Minimax Theorem
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Game Theory and the Minimax Theorem

Two-Person Zero-Sum Games

Consider a problem with two players: I and II. If player I chooses a strategy x € X, and
player II chooses a strategy y € Y, then I gains, and II loses, an amount (payoff) J(x,y).
Each player wants to maximize its payoff.

Example: Matching pennies

Player 11
m o Player I wants to maximize milr/l J(x,y) wrt x.
ye
Player II wants to minimize max<J/(x,y) wrt y.
x| -1 1 xeX
Player I Ifv,= ma;;;rémJ(x ,y)and V* = 21€1}r71mEaXJ(x ),
2 1 _1 and V* =V,, V =V* =V, is the value of the game.

Not every game has a value!
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Game Theory and the Minimax Theorem (cont.)

Mixed Strategies

Instead of choosing a particular strategy, each player can choose a mixed /randomized
strategy, i.e., a probability distribution over its strategy space X or Y: py(x), py(y)
(assuming that X and Y are finite).

The values of the game are

Ve =maxmin ) Y J(x,3)p(x)py(y),
Px Py yeX yey

V* =minmax Y Y J(x,y)pxx)py®).
Py Px yeX yey

The fundamental (minimax) theorem of game theory states that V., =V*.
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Game Theory and the Minimax Theorem (cont.)

Proof of Minimax Theorem
Let Ap:={z€ ([Ria')” 1xq +e+ap =1} (n - 1)-simplex).

We need to establish, equivalently, that for any matrix A € R™*"

Vs := max min xTAy— min max xTAy :V*
x€Ap yEAm yE€Am x€Ap

First notice that, for every x, y:
m1n xTAy <xTAy< max 2 Ay
y'eAm xeAp

so taking max wrt x and min wrt y gives V. <V*.

We need to show that Vi = V™, by showing that there is an xq s.t. mAin ngy =V*.
YEAm
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Game Theory and the Minimax Theorem (cont.)

Reformulation as an S-game
To gain geometric insight, we can simplify the problem by defining the risk set

S:={AyeR": ye Ay}

S0 min xTAy =mina’s.
yE€Am seS

Example L2
n ¥ ¥ i ©.2)"

T 2 2 0 0.5

21"

(0.5,1)7
Ty 0 1 2 1
— L1

S is the convex hull of the columns of A. (2,0
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Game Theory and the Minimax Theorem (cont.)

Back to the proof...

A minimax strategy for Player II, i.e., an yg s.t. max xTAyo = min maxal A y, corresponds to an
xeAp yeAm x€Ap
sg =Ayg €S of minimum spax := max{sy,...,sp}.

Let Qq :={s € R": smax < a}. Then
V* =inflaeR: Qq NS # o).

To find an xq s.t. mingcg xgs =V*, we can use the separat- N
ing hyperplane theorem to determine a hyperplane (given

by %) separating Qv+ and S: H={s€S: #ls=v*. N s
0

(x has been scaled so that Yj%; =1, since H contains S
the vertex s* = (V*,...,V*) of Qyx, so sy = xTs* = Qu
v* Y%= V*, and x7s < V* for all s € Q implies, by let-

ting s ; — —oo, that &; > 0 for all ;).

Then we can choose x( = &! This proves the minimax theorem. O
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Lagrangian Duality
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Lagrangian Duality

Given a convex optimization problem in a normed space, our goal is to derive its
(Lagrangian) dual. To formulate such a problem, we need to define an order relation:

Definitions

e A set C in a real vector space V is a cone if x € C implies that ax € C for every a = 0.

e Given a convex cone P in V (positive cone), we say that x =y (x,y € V) whenx -y € P.

e IfV is a normed space with closed positive cone P, x > 0 means that x € int P.

¢ Given the positive cone P <V, P® :={x* e V*: x*(x) = 0 for all x € P} is the positive
cone in V*. By Hahn-Banach, if P is closed and x € V, then x*(x) = 0 for all x* =0
implies that x = 0.

e If X,Y are real vector spaces, C € X is convex, and P is the positive cone of Y, a
function f: C —Y is convex if f(ax+(1-a)y) < af(x)+(1—a)f(y) for all x,y e X,
a€[0,1].

Given a vector space X and a normed space Y, let Q be a convex subset of X, and P be
the (closed) positive cone of Y. Also, let f: Q — R and G: Q — Y be convex functions.

Consider the convex optimization problem
min (x)
xeX r

st. x€Q, G(x)<0.
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Lagrangian Duality (cont.)

To analyze this convex optimization problem, we need to introduce a special function:

Definition

Let I ={y € Y : there exists an x € Q s.t. G(x) < y}; this set is convex (why?).

On T, the primal function w: Q — R is given by w(y) :=inf {f(x): x € Q, G(x) < y}.
Notice that the original optimization problem corresponds to finding w(0).

Properties
(1) w is convex.
Proof
w(ay; +(1-a)y2)
=inf{f(x): x € Q, G(x) < ay; +(1- a)yg}
<inf{f(ax1 +(1-a)xg): x1,x9 € Q, G(x1) < y1, G(xg) < y9}
<ainf{f(x): x€Q,Gx) <y1}

w(y)
+(1-a)inf{f(x): x € Q, G(x) < yg}
=aw(y;)+ (1 - a)w(y). O J y
(2) w is non-increasing: if y1 < y2 then
o(y1) = w(y2).
Proof. Direct. O
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Lagrangian Duality (cont.)

Duality theory of convex programming is based on the observation that, since w is
conves, its epigraph (i.e., the area above the curve of w in I’ x R) is convex, so it has a
supporting hyperplane passing through the point (0,w(0)). To develop this idea, consider
the normed space Y x R with the norm [(y,r)|| = |ly] +|r| for yeY and r e R.

Theorem
Assume that P has non-empty interior, and that there exists an x1 € Q s.t. G(x1) <0 (i.e.,
—G(x1) is an interior point of P). Let

uo =1inf{f(x): x € Q, G(x) < 0}, (%)
and assume p is finite. Then, there exists a y(’; eP®st.
to =1inf{f (x) + (G(x),y5): x € Q). (%)

Furthermore, if the infimum in (x) is achieved by some xg € Q, G(xg) <0, then the
infimum in (**) is also achieved by x¢, and (G(xq), yS) =0.
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Lagrangian Duality (cont.)

Proof. On Y xR, define the sets

A:={(y,r): y=2Gx), r=f(x), for some x € Q}, (epigraph of f)
B:={(y,r): y<0,r<pph

Since f,G are convex, so are the sets A,B. By the definition of iy, A nint B = @. Also, since P has an
interior point, B has a non-empty interior (why?). Then, by the separating hyperplane theorem, there
is a non-zero ws = (yg,ro) e (Y xR)* s.t.

(y1,99) +ror1 = (ye,yp) +rore,  forall (y,r1)€A, (y2,ra)€B.

From the nature of B, it follows that yS >0 and rq = 0. Since (0, up) € B, we have that (y,ya Y+ror=
roug for all (y,r) € A; if ry =0, then in particular y(’; #0 and (G(xl),ya‘) >0, but since ~G(x1) >0 and
yg >0, we would have that (G(xl),y6> <0 (we know that (G(xl),yg> <0; now, there exists a y e Y s.t.
(9,55> >0, 80 G(x1) + ey <0 for some &> 0, thus if (G(x1),y;) = 0 we would have (G(x1) +ey,y7) >0, a
contradiction). Therefore, ro >0, and we can assume w.l.o.g. that ro =1.

Since (0,ug) € ANB, o = inf{(y,y(’)‘) +r:(y,r)e A} =inf{f(x)+ (G(x),ya y: x€ Q) <inf{f(x): x€Q, G(x) <0}
= 19, which establishes the first part of the theorem. Now, if there is an xg € Q s.t. G(x¢) <0 and f(xq)
= g, then pg < fxg)+ (G(xo),ya‘) < f(xq) = po, so <G(x0)’y6> =0. O
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Lagrangian Duality (cont.)

The expression L(x, y*) = f(x) + (G(x),y*), for x € Q, y* € P® is the Lagrangian of the
optimization problem.

Corollary (Lagrangian Dual). Under the conditions of the theorem,

sup L(y*):=inf{f(x) +(G(x),y"): x € Q} = ug,
y'ep®

and the supremum is achieved by some 3’5 epP®.
Proof. The theorem established the existence of a ya‘ s.t. L(y*) = ug, while for all y* € P®, £L(y*)=
infreq(f(x) +(G(x),y™) Sinfreq G<0(f ) +(G(x),y™)) < infreq Go<o F() = Ho- O

The dual problem can provide useful information about the primal (original) problem,
since their solutions are linked via the complementarity condition <G(x0),28> =0.
Also, the dual problem always has a solution, so it may be easier to analyze than the
primal.

Remark. If f is non-convex, ® may be non-convex, and the optimal cost of the dual
problem provides only a lower bound on the optimal cost of the original problem.
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Lagrangian Duality (cont.)

Examples
(1) Linear programming. Let A e R™*" b e R" and c € R™, and consider the problem
: T
=min b'x
Ho xeR™
st. Ax=c, x=0.

Assume there is an x > 0 with Ax > c¢. Letting f(x) = bTx, G(x)=c— Ax and
Q=P ={x:x;>0 for all j}, the corollary yields, for y € P®=p,

Te, ifo=AT
L) =infdTx+yT(c—Ax): x>0 =inf((b- ATy Tx+yTc:x=00=4° & ! Y
—oo, otherwise,

so the Lagrangian dual, corresponding to the standard dual linear program, is
T
=max ¢
Ho forv3 y

s.t. ATysb, y=0.
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Lagrangian Duality (cont.)

Examples (cont.)
(2) Optimal control. Consider the system x(¢) = Ax(¢) + bu(t), where x(¢) € R",
AeR™" beR™ and u(t) € R. Given x(¢(), the goal is to find an input u on [¢(,#1]
which minimizes

t1
J(u) = / W2@)dt,
to

while satisfying x(¢1) = ¢, where ¢ € R”. The solution of the system is

~t1
x(tl):eA(tl_tO)x(t0)+Ku, Ku ::/ eA(tl_t)bu(t)dt,
Jitg

so problem corresponds to minimizing JJ(z) subject to Ku = ¢ — eA(tl_tO)x(tO) =:d

Assuming that u € Lo[¢g,t1], the corollary gives the dual problem

max _inf [J(u)+yT(d Ku)]=max inf / () - yTeA(t1 t)bu(t)]dt+y d
y=0 ueLgltg,t1] y=0 ueLgltg,t1]

= maxyTQy+de
y=0

t1 r
where @ := —(1/4) AL DppT A E1-D g4 Thisisa simple finite-dimensional
Jig
problem, and its solution, y,pt, yields uqpt(f) = (1/2)ygl')teA(t1_t)b.
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Application to Hy, Control Theory
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Bonus: Equality Constrained Optimization

Problem
@

st. g/=0, j=1,...n,

where Q € X and f,gl,...,g” are Fréchet differentiable on X.

Theorem 1. Let xg € Q be a local minimum of f on the set of all x € Q s.t. gj(x) =0,
Jj=1,...,n, and assume that the functionals dgjlco,...,ﬁggo are Li. (i.e., xq is a regular

point). Then,

dfxy(h)=0 for all 2 s.t. dg{;o(h) =0forall j=1,...,n.
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Bonus: Equality Constrained Optimization (cont.)

Proof

First, notice that there exist vectors y1,...,yn € X s.t. the matrix M e R"*™, M, = dgfé0 (yp), is
non-singular. To see this, consider the linear mapping G: X — R", [GI; = dg{;o (y). The range of G is
a linear subspace of R"; if dim Z(G) < n, there would exist a A € R" \ {0} s.t. ATG(y) =0forall yeX, i.e.,
{dg{éo) would be Li. Therefore, in particular there exist vectors y1,...,yn, € X s.t. Glyj)=ej,soM=1,
which is non-singular.

Fix he X s.t. dg{;o (h)=0for all j=1,...,n, and consider the set of equations gj (xo +ah + z}?:l ﬁkyk)
=0,k=1,...,n,in a,f1,...,Bn. The Jacobian of this system, [5gj/0ﬁk]a=ﬁk —0 =M, is non-singular.
Therefore, by the implicit function theorem (in R"), there exists a continuous function : U <R — R"
in an nbd U of 0 s.t. f(0) =0, and, for every € >0, there is a § >0 s.t. if [a| < and [|f(@)] <5,
0=gj(xo+ah+) p_q Br(@yy)
=g(x0) +adghy () +dgh (L _1 Pr(@)yp) +11 +pz,
-0 =MB(a)

where || <¢lal and |ug| <& HZZZI Br(@)yp ||
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Bonus: Equality Constrained Optimization (cont.)

Proof (cont.)
However, since M is non-singular, so d1 || ()| < IMB(a)| < dz||f(a)| for some d1,dg >0, and since the
yp’s are Li., d3ll fa)ll < HZZ=1 ﬁk(a)yk“ <dyll B(@)ll, for some dg,d4 > 0. Therefore, from the equation

above, there is a §' > 0 s.t. if |a| <&, [| (@)l < e|a| and ” o1 Br(@)yp ” <éelal.

Along the curve a — xg + ah + 22:1 Br(a)yy, f assumes its local minimum at xg, so

d
= —f(xo +ah +n(a))
da
a=0

a=

d n
dfgW= - f (xo +ah+ k; ﬁk(a)yk)

where |n(a)| < elal.
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Bonus: Equality Constrained Optimization (cont.)

Lemma. Let g1,...,85 be li. linear functionals on a vector space X, and let f be a linear
functional on X s.t. f(x) =0 for all x€ X s.t. g;(x)=0for all j =1,...,n. Then,
felin{gy,...,gn}.

Proof. Let G € #(X,R"*1), where Gj(x)=g;x) (j=1,...,n) and G11(x) = f(x). Note that Z(G) is a
linear subspace of R"*1 and due to the condition on £, it does not intersect {(0,...,0,x): x # 0}, so
dim%(G) < n+1 and there is a 1€ R"*1\ {0} s.t. AM81() + -+ Angn(x)+ A1 f(x)=0forallxe X.
Since the g;’s are Li., 1,11 #0, so dividing by —1,,+1 gives f = A1g1+-+ Angn for some /Tj’s. O

From this lemma and Theorem 1, it follows immediately that

Theorem 2 (Lagrange multipliers). Under the conditions of Theorem 1, there exist
constants 11,...,1, s.t.

n .
dfxg(m)+ Y Ajdgy (h)=0 forallheX.
i=1
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Bonus: Equality Constrained Optimization (cont.)

Example: Maximum entropy spectral analysis (Burg’s) method

Consider the problem of estimating the spectrum ® of a stationary Gaussian stochastic
process, given estimates of the first n autocovariance coefficients. This problem is
ill-posed, but one can appeal to the maximum entropy method to obtain an estimate:

1 /1
max H(®)=InV2re+— / In®(w)dw entropy rate of Gaussian process
®eCl-m,m] 4 )5
1 ("
s.t. o / e*OD(w)dw = ¢k, k=0,1,...,n, autocorrelation coefficients
nJ-n
O(w)=0, forallwel-m,7]. non-negativity constraint

We will solve this problem using calculus of variations, ignoring the non-negativity
constraint (since the solution, as will be seen, is already non-negative). We will assume
that the autocorrelation coefficients cq,c1,...,cn are s.t. the problem has feasible
solutions.
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Bonus: Equality Constrained Optimization (cont.)

Example: Maximum entropy spectral analysis (Burg’s) method (cont.)
Using Lagrange multipliers, an optimal solution ®°P* should satisfy
1 T

1 ikw
il = )h(w)dw+— Z 7L|k|/ h(w)dw =0, forallheCl-n,n].

Hence, using the fundamental lemma of calculus of variations,

1 1
+2 Apef?=0 o oPp)=-—u -~
q)opt(w) =Z—n [ 222:—n A\klelkw

where the quantities 1g,A1,...,A, can be determined from the autocorrelation
coefficients cq,c1,...,¢pn. This formula shows that the maximum-entropy spectrum
corresponds to that of an “auto-regressive process”.

Remark. The fact that ®°P! is a maximizer of the optimization problem follows from the
concavity of the cost function, and its non-negativity is due to that H(®) = —oco if @ is
negative inside an interval of [-7, 7] (yielding lower cost than any feasible ®).
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